PhD position in Fungal Cell Biology
PhD position in Fungal Cell Biology

A funded PhD position is available at the Institute of Biology Valrose, University of Côte d’Azur, Nice France to investigate the molecular mechanisms of antifungal tolerance – pathways linking cytoplasmic crowding to drug accumulation and stress responses in a human fungal pathogen. Initial studies indicate the majority of fatal fungal infections are caused by drug-tolerant strains. Candida albicans is a harmless commensal that in response to alterations of its environment can cause superficial, as well as life-threatening systemic infections. In this ERC funded collaborative project, our goal is to determine the link between antifungal drug tolerance and cytoplasmic crowding at the single cell level. The project will take advantage of cutting-edge imaging approaches, molecular genetics and image analyses to investigate relationship between physical characteristics of the cytoplasm and antifungal tolerance in C. albicans cells and communities.

We are seeking highly motivated candidates with a background in Cell Biology and previous experience in live cell imaging and/or image analyses. Previous experience in Microbiology is a plus.

Interested candidates contact R. Arkowitz (arkowitz@unice.fr)

  • C Puerner, N Kukhaleishvili, D Thomson, S Schaub, X Noblin, S Seminara, M Bassilana & RA Arkowitz. BMC Biol. 18: 122.
  • M Bassilana, C Puerner & RA Curr Opin Cell Biol. 2020 62:150-158.
  • A Weiner, F Orange, S Lacas-Gervais, K Rechav, V Ghugtyal, M Bassilana & RA Cell Microbiol. 2019 21: e12963.
  • PM Silva, C Puerner, A Seminara, M Bassilana & RA Cell Rep. 2019 28:2231–2245.
  • H Labbaoui, S Bogliolo, V Ghugtyal, NV Solis, SG Filler, RA Arkowitz & M Plos Pathog. 2017 13: e1006205.
1 Biology Technician position
1 Biology Technician position

Inserm biology technician position at the Université Côte d’Azur

We are seeking a talented and motivated candidate with a Bachelor Degree +2 in biotechnology (for instance graduated from a IUT) for a technician position to work in the teams of Dr. Matteo RAUZI and Dr. Arnaud HUBSTIENBERGER at the Institut de Biologie Valrose (University Côte d’Azur). This job offer can eventually result in a permanent position.

Tasks to be fulfilled:

  • Learning and conducting genetic crosses for both the Drosphila and Elegans model systems.
  • Learning and applying confocal microscopy imaging techniques on fixed and living
  • Conducting molecular biology and biochemical
  • Preparing solutions and media for the members of the
  • Helping the members of the teams in their
  • Taking care of the orders for consumables and small
  • Taking care of the safety
  • Fostering cohesiveness among the people in the lab.

 

Skills required:

  • Mastery of the English language
  • Maintaining a lab notebook
  • Punctuality
  • Precision
  • Rigorousness
  • Team spirit

 

Send a CV, motivation letter, scores/ranking of your latest exams and reference letters to matteo.rauzi@univ-cotedazur.fr and arnaud.hubstenberger@univ-cotedazur.fr

RAUZI LAB: http://ibv.unice.fr/research-team/rauzi/
HUBSTENGERGER LAB: http://ibv.unice.fr/research-team/hubstenberger/

1 PhD Position - Deadline 12th of May 2021
1 PhD Position - Deadline 12th of May 2021

Interdisciplinary Doctoral project

at the interface between engineering, biology, physics and informatics

at the University Côte d’Azur

 

Studying the mechanisms and mechanics driving epithelial tube formation

The formation of epithelial tubes is essential to build organs responsible to direct vital factors outside-in, inside-out or within a living animal (e.g., food and water in gut, air in lungs, saliva from salivary-tubes, blood in blood-vessels etc.). Therefore, tubing plays a critical role in multicellular life organized in stratified layers (i.e., where an inside and an outside is established). Understanding the mechanisms and mechanics responsible for tube formation is thus of great importance. Tube formation can result from tissue in-pocketing. The mechanisms responsible for in-pocketing are not well understood. To dissect and study this process, we use the sea urchin gastrula: a quite simple (i.e., powerful) model system ideal for in vivo mechanical studies. Our preliminary data highlight a possible combination of coordinated and radially planar cell polarized mechanisms that could be responsible for simultaneous uniaxial folding and extension of the vegetal plate. By implementing infra-red femtosecond ablation coupled to 4D multi-view light sheet microscopy, drug and RNAi perturbation, µ-aspiration and indentation to measure tissue mechanical properties, in toto 4D segmentation and mathematical modelling, this work will shine new light on the mechanisms and mechanics driving tissue in-pocketing for tube formation.

The project will be developped in the Rauzi lab that gathers people from different backgrounds (biology, informatics, physics, and engineering) to generate an interdisciplinary and synergistic group in an international environment.

We are seeking a motivated and talanted candidate to develop this PhD project.

Send by the 12th of May 2021 a CV, a motivation letter, master scores/ranking and reference letters to matteo.rauzi@univ-cotedazur.fr

RAUZI LAB: http://ibv.unice.fr/research-team/rauzi/

1 PhD Position in Neurosciences - Deadline Mid-June 2021
1 PhD Position in Neurosciences - Deadline Mid-June 2021

A joint PhD position in Neuroscience is available at the University of Turin (UNITO) and the University Côte d’Azur (UCA) within the framework of the Vinci Program 2020 (Università Italo-Francese/Université Franco-Italienne).

We are seeking for a highly motivated candidate, strongly interested in Experimental Neuroscience and Molecular Neurobiology and dedicated to high quality research. The research project deals with the identification of molecular mechanisms controlling mitochondrial function in postnatal neurogenic niches and their implication in cognitive disorders.

The project will focus on the mitochondrial dysfunction caused by deficiency of the transcriptional regulator Nr2f1 (also known as COUP-TFI) and will address the downstream target genes crucial for mitochondrial function and investigate its outcome on neuronal plasticity and function. Patients with NR2F1 haploinsufficiency     have     mild     to      severe      neurodevelopmental      cognitive      disorders,      such as intellectual deficiency, epilepsy, learning and language impairments. The final goal is to unravel the cellular and molecular mechanisms by which Nr2f1 controls mitochondrial function in neurons and how this is correlated with proper cognitive behavior.

The project will combine multiple methodologies ranging from gold-standard neuroanatomical approaches to advanced techniques, such as tissue clearing, light-sheet microscopy and 3D whole-brain reconstruction, and two-photon functional imaging, as well as genome-wide and in silico analyses and animal behavior.

The successful candidate will enroll as a PhD student in Neuroscience at the University of Turin under the co- direction of Prof. Silvia De Marchis and Dr. Michèle Studer. The candidate needs to have good communication skills in English and willing to work in Italy and France since the project will be carried out in the “Adult Neurogenesis” group at the Neuroscience Institute Cavalieri Ottolenghi at UNITO and in the “Development and Function of Brain Circuits” group at UCA.

The call will open on May 20, 2021 on the UNITO website (deadline for mid-June, 2021 – check the exact deadline on the platform) and the starting date of the PhD program is November 1st, 2021. The position is fully financed for four years.

General information on the organization and activities of the PhD Program can be found on the PhD in Neuroscience website (https://dott-neuroscienze.campusnet.unito.it).

If interested, please contact silvia.demarchis@unito and michele.studer@unice.fr by including an updated and detailed CV and a motivation letter.

 

Relevant publications:

Bonzano S, Crisci I, Podlesny-Drabiniok A, Rolando C, Krezel W, Studer M, De Marchis S. Neuron- Astroglia Cell Fate Decision in the Adult Mouse Hippocampal Neurogenic Niche Is Cell-Intrinsically Controlled by COUP-TFI In Vivo. Cell Rep. 2018 Jul 10;24(2):329-341. doi: 10.1016/j.celrep.2018.06.044.

Flore G, Di Ruberto G, Parisot J, Sannino S, Russo F, Illingworth EA, Studer M, De Leonibus E. Gradient COUP-TFI Expression Is Required for Functional Organization of the Hippocampal Septo-Temporal Longitudinal Axis. Cereb Cortex. 2017 Feb 1;27(2):1629-1643. doi: 10.1093/cercor/bhv336. PMID: 26813976.

Beckervordersandforth R. Mitochondrial Metabolism-Mediated Regulation of Adult Neurogenesis. Brain Plast. 2017 Nov 9;3(1):73-87. doi: 10.3233/BPL-170044.

1 Doctoral position in the Vessel Formation in Development and Disease group
1 Doctoral position in the Vessel Formation in Development and Disease group

An ANR funded PhD position is available in the Vessel Formation in Development and Disease group at the iBV

The role of p16-dependent cellular senescence in healthy aging

 

Description :

Cellular senescence attracts attention as a key player contributing to organismal aging. The accumulation of senescent cells is dramatically increased with aging, however their precise contribution to aging-related phenotypes remains largely unclear. In collaboration with the team of D. Bulavin we showed p16-dependent senescent cells are required for healthy aging. We used different novel inducible mouse lines to characterise the role of p16 expressing cells in different organs. Currently, we focussed mainly on liver. The project aims at identifying the cell repertoire linked to aging-induced senescence and to investigate the impact of senescent cells on liver functions and to understand molecular pathways modulated by senescence. For these purposes we will use p16-Cre and p16-Cre-ERT2 mice crossed either with Rosa26-mTmG reporter or Rosa26-DTA ablator mice. The animals will be investigated by histological and immunohistological methods and RNA sequencing will be performed at different ages. This project will help to understand the molecular mechanism responsible for aging-induced activation of senescence and hopefully identify potential molecular targets to manipulate senescence through reprogramming and/or selective elimination of subsets of senescent cells.

Required Skills :        

The working language is English.
Experience in molecular biology, cellular biology and/or mouse genetics would be a plus.
Motivation to work with mouse models and team orientation are required. Animal experimentation training is part of the project.

Related publications:

Grosse, L, Wagner, N, Emelyanov, A, Molina, C, Lacas-Gervais, S, Wagner, KD et al.. Defined p16High Senescent Cell Types Are Indispensable for Mouse Healthspan. Cell Metab. 2020:. doi: 10.1016/j.cmet.2020.05.002. PubMed PMID:32485135 .

Wagner, KD, Du, S, Martin, L, Leccia, N, Michiels, JF, Wagner, N et al.. Vascular PPARβ/δ Promotes Tumor Angiogenesis and Progression. Cells. 2019;8 (12):. doi: 10.3390/cells8121623. PubMed PMID:31842402 PubMed Central PMC6952835.

Wagner, KD, El Maï, M, Ladomery, M, Belali, T, Leccia, N, Michiels, JF et al.. Altered VEGF Splicing Isoform Balance in Tumor Endothelium Involves Activation of Splicing Factors Srpk1 and Srsf1 by the Wilms' Tumor Suppressor Wt1. Cells. 2019;8 (1):. doi: 10.3390/cells8010041. PubMed PMID:30641926 PubMed Central PMC6356959.

Wagner, KD, Ying, Y, Leong, W, Jiang, J, Hu, X, Chen, Y et al.. The differential spatiotemporal expression pattern of shelterin genes throughout lifespan. Aging (Albany NY). 2017;9 (4):1219-1232. doi: 10.18632/aging.101223. PubMed PMID:28437249 PubMed Central PMC5425123.

Wagner, KD, Cherfils-Vicini, J, Hosen, N, Hohenstein, P, Gilson, E, Hastie, ND et al.. The Wilms' tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat Commun. 2014;5 :5852. doi: 10.1038/ncomms6852. PubMed PMID:25510679 .

El Maï, M, Wagner, KD, Michiels, JF, Ambrosetti, D, Borderie, A, Destree, S et al.. The Telomeric Protein TRF2 Regulates Angiogenesis by Binding and Activating the PDGFRβ Promoter. Cell Rep. 2014;9 (3):1047-60. doi: 10.1016/j.celrep.2014.09.038. PubMed PMID:25437559 .

Contacts:

Kay-Dietrich Wagner – kwagner@unice.fr
Nicole Wagner – nwagner@unice.fr

 

PhD Position - 3 years - Starting October 2020
PhD Position - 3 years - Starting October 2020

Deciphering the regulation of the cell death receptor Fas by cell polarity molecules & adherens junctions in both tumoral and normal human epithelia

Key words: Receptor, Signaling, Cancer, Cell polarity, Cell-Cell jonctions

 

The PhD student will integrate the research group “death receptors signaling in cancer therapy” (iBV, http://ibv.unice.fr/research-team/hueber). at the Institute of Biology Valrose affiliated to the CNRS, Inserm and University Côte d’Azur (UCA).

Project proposal: Our team is investigating the functions of the cell death receptor Fas/CD95/TNFRSF6, a member of the TNFR superfamily. Fas is considered as a tumor suppressor thanks to its ability to eliminate cancer cells by engaging programmed cell death by apoptosis. However, Fas activation by its ligand (FasL) could also promote tumor development and immune disorders (1). Our group is studying the molecular mechanisms that control the Fas versatile signaling outcome in the context of both normal and cancer cells (2, 3). Our recent data show that formation of adherens junction, a cell-cell adhesion complex, and association with the Dlg1 polarity complex prevent the pro-apoptotic signaling of Fas (4, 5). This new Fas-regulatory mechanism is crucial to protect normal epithelial cells from apoptotic signals and to sense and eliminate abnormal cells from epithelial tissues to prevent pathological outcome such as cancer and chronic inflammatory diseases. The PhD student will pursue this project and decipher the regulation of Fas cell death and non- death signaling by the Cadherin-Dlg1 polarity complex notably by studying Fas receptor signaling/trafficking on both primary and tumoral epithelial human cells by using various cell biology approaches.

Bibliography of the team link to the project: 1- Rossin et al (2019) Cancers, 8;11(5):639. 2- NL t al (2018) Sci Rep, 20;8(1):12424. 3- Chakrabandhu K (2016), PLoS Biol, 4;14(3). 4- Gagnoux-Palacios, L.; et al (2018) Journal of Cell

Biology, 217, 3839-3852. 5- Gagnoux-Palacios L., Hueber AO (2019) Medecine/Sciences. 35(11):830-833.

Technical approaches: Human cell culture; cell death assays; receptor trafficking studies (cell surface labeling, endocytosis assay), protein expression quantification/localization (FACS, IP, IF, IB, ELISA, proteomic); microscopy techniques (confocal imaging, time-lapse).

Candidate profil: We are looking for a highly motivated student, independent and creative, with a Master’s Degree in Cellular, Cancer or Molecular Biology. Prior experience with cell culture and classical cellular and biochemical approaches will be appreciated.

HOW TO APPLY: Interested and motivated students should send as soon as possible a CV, a motivation letter, master scores/ranking and reference letters to both L. GAGNOUX (gagnoux@unice.fr) and A-O HUEBER (hueber@unice.fr).

1 Doctoral position - Deadline June 1st, 2020 (Optogenetics)
1 Doctoral position - Deadline June 1st, 2020 (Optogenetics)

 Doctoral position at University Côte d’Azur: Fungal Cell Biology

Light-dependent regulation of cell polarity in a fungal pathogen

The fungus Candida albicans is normally a harmless commensal that is found on mucosal surfaces of the gastrointestinal and urogenital tract in most healthy individuals. This commensal organism can cause superficial as well as life-threatening systemic infections in response to alterations of its environment, and is particularly aggressive in immuno-compromised individuals. As an opportunistic pathogen it can colonize and infect different body sites and is responsible for one of the most predominant fungal nosocomial infections. The ability of this fungus to switch from an ovoid form to a filamentous form is critical for its pathogenicity, in particularly its ability to invade and penetrate into host tissues and evade and burst out of host immune cells.

The recent advent of light-dependent approaches to control protein subcellular localization has made possible the specific alteration of growth, circumventing classical genetic and chemical perturbations. We have optimized such a light-dependent protein targeting system for C. albicans, which gives us exquisite control of growth in this organism. In addition, new variants of these systems have been established which facilitate their use and response time. Furthermore, a number of new, spectrally distinct fluorescent proteins, which we have optimized for use in C. albicans, now make it possible to follow different cellular processes simultaneously during light-dependent perturbation of growth and cell polarity. The goal of this project is to use such a light-dependent protein targeting to probe filamentous growth as well as invasive filamentous growth in a human fungal pathogen. The project will use a combination of molecular biology, microbiology and live cell microscopy to probe filamentous growth and morphogenesis in this fungal human pathogen.

We are seeking highly motivated candidates with a background in Cell Biology and interest in live cell imaging. Experience in Microbiology would be a plus.

Interested candidates can contact R. Arkowitz (arkowitz@unice.fr) by June 1st

 

1) M Bassilana, C Puerner & RA Arkowitz. Curr. Opin. Cell Biol. 2020 62:150-158.
2) PM Silva, C Puerner, A Seminara, M Bassilana & RA Arkowitz. Cell Rep. 2019 28:2231–2245.
3) RA Arkowitz & M Bassilana. F1000 Res. 2019 8.
4) A Weiner, F Orange, S Lacas-Gervais, K Rechav, V Ghugtyal, M Bassilana & RA Arkowitz. Cell Microbiol. 2019 21: e12963
5) H Labbaoui, S Bogliolo, V Ghugtyal, NV Solis, SG Filler, RA Arkowitz & M Bassilana. Plos Pathog. 2017 13: e1006205

 

1 Doctoral position - Deadline June 1st, 2020 (SuperRes)
1 Doctoral position - Deadline June 1st, 2020 (SuperRes)

Doctoral position at University Côte d’Azur: Fungal Cell Biology

Organelle dynamics in a human fungal pathogen at high temporal and spatial resolution

Worldwide, fungal infections cause significant morbidity and mortality and Candida species are the major etiological agent of such life-threatening infections and represent an emerging global microbial threat. A range of advances in medical treatment have increased life expectancy yet also dramatically increased the population of elderly as well as severely ill patients, highly susceptible to nosocomial infections, in particular those caused by fungi such as Candida albicans. C. albicans is normally a harmless commensal, found on mucosal surfaces of the gastrointestinal and urogenital tract in most healthy individuals that causes superficial as well as life-threatening systemic infections in response to alterations of its host environment. It is particularly aggressive in immuno-compromised individuals. The ability of this organism to switch from an ovoid to a filamentous form, concomitant with changes in cell surface antigens and enzyme production, is critical for its pathogenicity, in particular to invade host tissues and evade host immune cells. Many fungi, including C. albicans form elongated hyphal filaments that are tube-like cells in which growth is restricted to the tip. This dramatic yeast to filament cell shape change is a distinct advantage for studying the regulation of cell polarity and membrane traffic, critical for such morphogenesis. However, the hyphal apical zone is densely packed, with multiple membrane compartments including secretory vesicles below the light resolution limit and somewhat larger Golgi cisternae in a small volume at the filament tip and these compartments are highly dynamic making live cell imaging extremely challenging, in particular with high temporal and spatial resolution.

To understand the exquisite regulation of tip growth, the aim of this project is to quantitate the movement of membrane compartments in 3D with high spatial and temporal resolution. Conventional methods including fluorescence microscopy and electron microscopy suffer from either limited spatial or temporal resolution, whereas of super-resolution microscopy approaches, has made imaging with a resolution higher than that imposed by the diffraction limit of light possible. This interdisciplinary project (carried out with Laure BLANC‐FERAUD, I3S Laboratory – UMR CNRS 7271) will take advantage of fluorescent molecule blinking and their fluctuations over time, to generate super-resolved images with high temporal resolution. The goal of this project is to develop, optimize and apply such methods, specifically adapted to a multimodal microscope established at the iBV, to the investigate the reorganization of the membrane compartments during C. albicans filamentous growth, with high temporal and spatial resolution. This project will involve extensive state-of-the-art microscopy as well as optimization of image reconstruction and analyses computational algorithms.

We are seeking highly motivated candidates with a background in Cell Biology and interest in live cell imaging. Experience in Microbiology would be a plus.

Interested candidates can contact R. Arkowitz (arkowitz@unice.fr) by June 1st

 

1) M Bassilana, C Puerner & RA Arkowitz. Curr. Opin. Cell Biol. 2020 62:150-158.
2) PM Silva, C Puerner, A Seminara, M Bassilana & RA Arkowitz. Cell Rep. 2019 28:2231–2245.
3) RA Arkowitz & M Bassilana. F1000 Res. 2019 8.
4) A Weiner, F Orange, S Lacas-Gervais, K Rechav, V Ghugtyal, M Bassilana & RA Arkowitz. Cell Microbiol. 2019 21: e12963
5) H Labbaoui, S Bogliolo, V Ghugtyal, NV Solis, SG Filler, RA Arkowitz & M Bassilana. Plos Pathog. 2017 13: e1006205