
Andreas SCHEDL
Molecular programs controlling development and tissue homeostasis
Main interests
- Signals directing self-renewal and differentiation of renal stem cells
- Transcriptional control of glomerular podocyte differentiation
- Adrenal tissue homeostasis and its links to cancer
- Sex-specific differences of non-reproductive organs
Scientific Questions

Organ development is a highly complex process that requires the orchestrated action of transcription factors and signalling pathways. Once an organ has formed it needs to be maintained to ensure proper functioning throughout the entire life. To achieve this feat, many organs employ stem cells that can be activated to renew the damaged organ. Past research has demonstrated that development and tissue maintenance are highly interrelated and molecular programs driving development and differentiation are also triggered when stem cells become activated to replace damaged or lost cells. Focusing on the kidney and adrenal glands, our research program aims at understanding the transcriptional control underlying tissue development, define stem/progenitor cells in the adult organism and determine the signalling pathways that are involved in their maintenance and activation.
Our Strategy

Kidneys are central cardiovascular organs that ensure blood filtration and - together with the adrenals - control blood pressure, pH and electrolyte concentration. Kidney diseases are on the rise and it is expected that as many as 1 in 10 people will suffer from renal disease at some stage during their life. Moreover, defective blood pressure control leads to hypertension, the foremost cause of death worldwide. Given the high incidence of these diseases, new therapeutic approaches are urgently required. A vision for the future is to employ regenerative medicine that would permit the growth of new organs from a patient’s own cells. To achieve this goal an in depth knowledge of how kidneys and adrenals form and how they are maintainted is required. In our lab, we are concentrating on three main topics: 1) We address how proliferation of renal stem cells is regulated and identify molecular networks directing their differentiation into functional nephrons. 2) We study podocytes, a key component of the renal filtration barrier, and address how differentiation and maintenance of this unique cell type is achieved. 3) We identify the molecular pathways required for adrenal cortex specification and maintenance. To achieve our goals we employ state of the art genetic (inducible knockouts, CRISPR/Cas9, lineage tracing, organoids) and molecular techniques (ChIP-Seq, scRNA-Seq) and analyze gene function in vitro and in vivo.
Research Aims

Nephron progenitors represent a developmental stem cell population that fuels nephron formation and determines the total number of nephrons per kidney. Progenitors need to constantly decide between quiescence, proliferation and differentiation, which is achieved through signalling pathways that induce specific transcriptional responses. We are focussing on the transcriptional regulators of the SOXC class, identify their role in these processes and determine the molecular networks they regulate.

Podocytes are highly specialized cells that form unique cell extensions (footprocesses) required for glomerular filtration. Podocyte damage is one of the main mechanisms leading to end stage renal failure thus underlining the importance of this cell type. We are interested in identifying the transcriptional program orchestrating podocyte differentiation and maintenance and understand how the unique structure and function of this cell type is acquired and maintained.

The adult adrenal cortex undergoes constant tissue renewal. To achieve this feat cells proliferate at the outer cortex and migrate in a centripetal fashion changing their differentiation along their differentiation path only to undergo apoptosis at the cortico-medullary boundary. We are studying the molecular pathways that ensure maintenance of organ size and function, and address how disruption of tissue dynamics can lead to adrenal diseases, including cancer.
Researchers
VIDAL Valérie - +33 489150735
NEIRIJNCK Yasmine - +33 489150735
PreDocs
TEDESCO Mélina - +33 R
KOVáCS Kristóf - +33 R
Engineers & Technicians
JIAN MOTAMEDI Fariba - +33 489150735
BENOIT Timothé - +33 489150873
BENOIT Timothé - +33 489150873
JAILLOT Léa - +33 R
2018 - Equipe labellisée – Ligue contre le Cancer
2012 - Equipe labellisée - ARC
2009 - Award of the French kidney foundation (Prix de la Fondation du Rein)
2009 - Equipe labellisée - FRM
2007 - Member of the Faculty of 1000 Medecine
2006 - Equipe labellisée - FRM
2003 - Avenir - Inserm
2002 - Philippe Leverhulme Prize (UK)
2001 - Young Investigator Programme - EMBO

Congratulations to Yasmine Neirijnck and Agnes Banreti for their INSERM permanent positions!
Read More

Novel factors discovered that orchestrate kidney formation
Read More

Why are women more at risk of adrenal cancer?
Read More

UCA annual Award Ceremony: 7 iBV members recognised for their scientific contributions
Read More
iBV - Institut de Biologie Valrose
"Centre de Biochimie"
Université Nice Sophia Antipolis
Faculté des Sciences
Parc Valrose
06108 Nice cedex 2